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Abstract
This report describes a 'learning program' that acquires much of the

knowledge required by a parsing system that processes conversations in a 'natural'

language akin to ham-radio jargon. The learning program derives information from

example sentences taken from transcripts of actual conversations, and uses this

knowledge to extend the 'core' augmented transition network (ATN) grammar. The

parser can use the extended grammar to process the example sentences, plus a

large number of syntactically and semantically related sentences.

The learning program uses a set of heuristics to determine the difference

between the existing version of the grammar and a superset that could process the

example sentence. A set of models act as templates to produce possible extensions

to the grammar. An evaluation measure selects one of the extensions and adds it to

the grammar. This extension is henceforth an integral component of the knowledge

base and may be used by the parser to process conversations and by the learning

program to extend the grammar further.

This report relates the mechanisms used by the learning program to

grammatical inference of context-sensitive languages, which include the natural

languages, and some proposed linguistic models of human language acquisition.

These models describe language acquisition as a process of developing hypotheses

according to the constraints of innate universal rules, and acceptance of those

hypotheses that make it possible for the child to understand new sentences.

Similarly, the learning program develops its hypotheses within the constraints of

certain 'universal' models and accepts only those hypotheses that enable the parser

to process the motivating example.
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1. Introduction

1.1 Motivation

As computer technology advances, computers are being applied to more

complex tasks that require increasingly greater 'domain-specific' knowledge. One of

the pressing goals of computer science and engineering is to determine how to

incorporate this knowledge into computer systems in an efficient way.

There are two major approaches in current use that attempt to solve this

problem. One approach in current use is the development of various 'tools'

specifically tailored for installing the domain-specific knowledge, including

very-high-level languages and special-purpose editors. Another approach, which

has met with considerably less success, is to let the comouter do most of the work of

acquiring the information. This report describes a computer program that acquires

much of the knowledge necessary to perform its task.

The task in this case is parsing human conversations in a very limited domain.

The conversations take place between operators on Morse code radio-networks in a

simple 'natural' language akin to ham-radio jargon, where the possible topics of

conversation are limited by radio network protocol to such things as establishing

contact, discussing and sending messages, re-sending garbled parts of the

messages, and ending contact. In tandem with a transcription system, the parser

processes the hand-sent Morse code to produce a human-readable transcript and

information summary. The domain-specific knowledge required by the parser

consists of the discourse structure and the syntax and semantics of the language,

and this knowledge is organized as an augmented transition network (ATN).
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However, the programmer who developed the original parser was not able to

incorporate enough domain-specific knowledge into the system to parse all, or even

most, of the actual conversations that occur in this domain, simply because this

information is not available in its totality. However, one can expect that as the parser

performs its task, transcripts of conversations that it can not process adequately with

its current knowledge base will become available. It was desirable to develop a

mechanism by which the system could extend its knowledge base, given the new

transcripts, in a way that enables it to correctly process each of the new

transmissions (or sentences) in these example conversations, plus a large number of

similar transmissions.

A computer program with these abilities would incorporate a high degree of

learning ability. Winston [23] describes the levels of learning ability as a shift of

effort from the teacher to the student. His four levels include learning by being

programmed, learning by being told, learning by example, and learning by discovery.

The original domain-specific knowledge incorporated by the programmer into the

system described in this report is an example of 'learning by being programmed'. A

system that was explicitly guided by some teacher in its acquisition of knowledge,

with the instructions of the teacher phrased in the language of the domain rather

than some programming language, would be 'learning by being told'. The program

described here at times must 'learn by being told', for the program must sometimes

ask questions of the human supplying examples and the human responds in the

language of the domain. However, for the most part this program 'learns by

example': the program derives the ability to parse new sentences and phrases from

the examples of sentences and phrases presented to it.



°8o

One approach to developing a computer program that could acquire such

knowledge, or 'learn', from examples is to borrow from theories about the learning

processes of humans, the most successful 'learning machines' to date. However, the

human learning processes are incompletely understood. Current theories suggest

that they consist in part of forming generalizations from data and deriving rules from

them. The correct application of these rules by the learner demonstrates that

something has, indeed, been learned.

One well-known example of human learning that seems, on the surface, very

similar to the problem at hand is the acquisition of language by children. Humans

acquire their first language almost entirely by hearing it spoken. The generalization

of data follows very quickly as children learn to produce grammatical sentences with

no formal instruction in the grammar of their native language; they infer the rules of

their grammar from the sentences they hear spoken [13].

Some linguistic models proposed by Chomsky [4, 5] make the controversial

proposition that a child may know about certain aspects of language: some

knowledge is innate and the child need not learn these aspects in the usual sense.

These innate aspects of language are called the universal grammar and, according

to these models, form the basis for forming generalizations and deriving rules from

the utterances that the child hears spoken.

The system described here borrows some aspects of these linguistic models

that seem particularly appropriate for extension of the grammar used by the parsing

program, and incorporates them in a separate learning program that includes all the

domain information of the original parser and can operate on the same grammar.

This does not mean that the resulting computer program models human language
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acquisition in any psychologically realistic sense. However, the research described

here demonstrates that theories that attempt to explain human learning processes

are also useful for developing computer programs that acquire knowledge.

Previous work in this area has concentrated on the development of algorithms

for the inference of formal grammars from very large sets of examples. The problem

of inferring an exact grammar for an arbitrary (but constrained) language has been

solved for the regular languages [3, 12, 14], and some very restricted subsets of the

context-free languages [6, 7, 8, 17, 22]. However, there has been very little progress

toward the development of a general and practical mechanism for deriving

grammars for the more powerful context-sensitive languages, which include all

natural languages. This research represents a step toward this goal.

1.2 Organization

The result of this research is a learning program called MAGE (Morse

Automatic Grammar Extension system). MAGE uses a 'domain model' that includes

information about the simple language and the environment in which it is used, a

small 'core' grammar organized as an ATN, and some knowledge about what type of

result it is expected to produce. MAGE is designed to receive individual examples of

sentences from the language and extend the grammar so that it can parse each

example, plus a large number of similar sentences. An arbitrary number of examples

may be provided to produce an arbitrarily large grammar.

MAGE uses a set of heuristics to determine the difference between the

grammar and a superset of the grammar that would be able to process the example

sentence. It uses a set of models as templates to 'enumerate', or list, a set of possible

extensions to the grammar that might bridge this difference. A unique 'evaluation
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measure' guides the enumeration process, to keep the list of possible extensions

workably short, and selects one of these extensions, which is then added to the

grammar. The evaluation measure is based on the ability of the grammar to extract

important information from conversations: an extension is enumerated only if it

provides a mechanism for parsing the new phrase, without considering the context,

and an extension is selected only it it makes it possible fQr the entire example

containing the new phrase to be parsed by the standard ATN parsing algorithm that

is used as a tester.

The process outlined above is analogous, in some aspects, to linguistic

models developed by Chomsky [4, 5] and Dale [9] of the learning mechanisms used

by children when acquiring a native language. According to these models: the child

has innate knowledge of a universal grammar that provides a mold in which the child

develops the grammar for her own language; and the child uses a set of universal

rules that prescribe the ways she can organize the utterances she hears and

evaluate the hypotheses she forms according to whether or not they help her to

understand the utterance. These components of the language acquisition models

are similar to the domain model, hypothesis-formation models, and evaluation

measure of MAGE, respectively.

Although MAGE borrows from linguistic models, this author does not

necessarily endorse any of these models nor support these or any other linguistic

theories. The augmented transition network mechanism discussed in this report is

not related to these linguistic models, nor does this author claim that the ATN is a

realistic model of human language comprehension. What this report does say about

these theories of language acquisition is that some aspects of the models can be
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implemented as a computer program operating on a data structure representing an

ATN grammar.

The rest of this report is organized as follows:

* Chapter 2 presents MAGE's domain model and the particular aspects
that make possible the evaluation measure.

" Chapter 3 states the general grammatical inference problem, and
presents the hypothesis-formation algorithm and evaluation measure
used by MAGE in its partial solution to the related problem of
grammatical extension.

" Chapter 4 discusses further the domain model, hypothesis-formation
models, and evaluation measure in the context of language acquisition
by children.

" Chapter 5 describes the design and implementation of MAGE.

" Chapter 6 contains a summary and conclusions.
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2. An ATN with Semantic Categories

2.1 Machine Recognition of Hand-sent Morse Code

The research was motivated by the real-world problem of automating the

recognition and understanding of hand-sent Morse code in an amateur-radio

network environment. Morse code consists of five elements: dots, dashes, mark

spaces, letter spaces, and word spaces. The English alphabet, digits, and

punctuation are encoded as groups of one to six marks (dots or dashes) separated

by mark spaces. These groups are separated from each other by letter spaces

(ideally, three times as long as a mark space) and combined into words, which are

separated from each other by word spaces (ideally seven times as long as a mark

space). For example, "SOS" is transmitted as "dot ms dot ms dot Is dash ms dash

ms dash Is dot ms dot ms dot ws", where "S" is encoded as "..", "0" as ..---".., m "

means mark space, "Is" letter space, and "ws" word space. Morse code is

transmitted over radio by short signals (dots) and long signals (dashes), with the

pauses in between signals serving as spaces.

It is desirable to automate the reception of these signals and the transcription

of the marks and spaces back into character text, to produce a readable output.

However, there are many aspects of manual Morse code that make transcription

difficult, not only for a machine but also for a human operator. Many errors are

introduced by radio attributes like transmitter chirp and atmospheric interference,

and by sender irregularities including spacing errors (e.g. a letter space that is

shorter than a nearby mark space), mark errors (e.g. sending a dash instead of two

dots) and spelling errors. The result is analogous to speech that is slurred or broken

- . . . . . . . . . . . . . . " . . . . . . .. . . . . I 1 I I. . . . Ii . . . . . . . . ll l l . . . . . . . . . . . .
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by arbitrary pauses and includes a few mispronounced words.

Research in machine transcription of manual Morse code began in the 1950's

and included the development of MAUDE (Morse AUtomatic DEcoder) [11] at M.I.T.'s

Lincoln Laboratory. MAUDE and other early transcribers were based on a small set

of statistical and linguistic rules; no attempt was made to take advantage of the

constraints provided by radio network protocol or the informational content of the

transmissions.

Recently, a system called COMCO-1 (COmputerized Morse Code Operator)

[21] has been developed at M.I.T.'s Laboratory for Computer Science. It involves a

new perspective on the manual Morse code problem: it utilizes extensive knowledge

of the peculiarities of hand-sent Morse code and amateur-radio network protocol,

and attempts to 'understand' the Morse code conversation.

COMCO-1 consists of three components: a signal-processing system, a

Morse-code-to-character-text transcriber, and a text understander, or parser. The

signal-processing system produces a file of mark and space durations based on its

analysis of radio signals.

The transcriber, a software system called COMDEC (COmputerized Morse

DECoder), converts marks and spaces to character text using a set of modules, each

of which is an 'expert' on one aspect of transcription. Each module corrects certain

types of errors and makes additions to a set of suggested transcriptions, where each

transcription consists of a list of vocabulary elements. COMDEC is aided by

dictionaries of ham-radio jargon and the English language.
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2.2 An ATN Parser for Morse Code Conversations

The parser, called CATNIP (Comco-1 Augmented Transition Network

Interfaced Parser) [16], uses an augmented transition network (ATN) grammar to

evaluate the transcriptions suggested by COMDEC with respect to their syntactic

and semantic coherence and selects one that matches a path through the ATN. The

grammar includes a transition network that represents the syntactic/semantic

structure of a Morse code conversation, and a set of registers, and functions that

operate on them, designed to store information extracted from a conversation. Both

COMDEC and CATNIP are written mostly in MDL [15], a high-level programming

language of the LISP family.

The conversations largely consist of a shorthand language called chatter.

Network protocol and the limited vocabulary of chatter constrain the possible topics

of conversation to the statement and query of operator identification, signal

characteristics, rendezvous information, message traffic information, and so forth.

The conversations are task oriented, and a parser can 'comprehend' the dialogue

because both the topic of conversation and the movement from topic to topic is

severely limited.1 No formal definition or language generator exists for this

natural-language-like jargon, so the grammar was derived from several hours of

transcripts.

This grammar follows the ATN formalism described by Woods [24]: An

augmented transition network consists of two components: a transition network

(TN), and a set of registers with associated functions. A transition network is a set of
1 An example of a short but typical conversation that can be parsed by CATNIP is given in Appendix

I.
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named' finite state machines, or subnetworks, where a transition symbol may be the

name of another (or the same) subnetwork. When the name of some subnetwork

appears as one of the symbols of a transition, it indicates a 'push' to that

subnetwork, in the sense of calling a subroutine. A terminal state indicates a 'pop' to

the 'calling' transition, which may then be followed to the state it designates. When

other words appear as transition symbols, the parser operates the subnetwork as a

finite state machine, attempting to 'accept' the input sequence.

An ATN also includes a set of registers designed to hold contextual

information, a set of tests that determine the validity of a word in a given context, and

a set of actions to change the contents of the registers as the context shifts. A

possibly empty set of tests and actions is associated with each transition. When a

transition symbol has been matched by one of the mechanisms described above, the

transition may be followed only if each of the tests can be passed.

After the parser has been determined that a transition may be followed, each

of the associated actions is applied before the parser continues processing from the

next state. Actions are often used to build and connect parts of parse trees, which

are saved in the registers until completed at the end of the parse, but this ability is

not used by CATNIP. Augmented with registers, tests, and actions, a transition

network has the power of a Turing machine. A more detailed discussion of

augmented transition networks is given by Ritchie [19].

CATNIP's grammar conforms very closely to Woods' definition of an ATN, with

two exceptions. The first is that CATNIP's registers, and the tests and actions that

act on them, were designed to manipulate the particular informational items that are

expected to appear in chatter conversations, rather than to build parse trees for



-16-

legal sentences. These items include call-signs (names) and locations of operators;

time and date; ratings of strength, clarity, etc. of signals; traffic information like

message number, length of message, and the message body; and conversation

history like pending questions and requests.

This exception illustrates one of the most powerful features of the augmented

transition network model: the possibility exists of adding to the model whatever

facility is needed and seems natural to do the job. An addition requires only a

relaxation of the restrictions on the types of tests and actions but no reformulation of

the basic model.

2.3 The Syntax of Chatter

The second exception to the standard ATN is the unusual organization of

CATNIP's grammar into topical categories. Each of the nineteen subnetworks is

designed to process a particular set of semantically related substrings. ATN

knowledge bases for language processing are usually organized into subnetworks

that process syntactic structures, such as 'noun phrase' and 'verb phrase' in

English. A subnetwork begins processing a substring when it is referenced by a

'push specification' (i.e. the name of the subnetwork) on a transition of a higher-level

subnetwork. The push specification performs the dual role of expressing a top-down

prediction that some particular kind of item is needed at that point in the input

stream, and indicating which subnetwork is to be used to process the item. The

suitability of a particular type of category (for example, 'noun phrase' is a syntactic

category) depends both on the ways that grammatical predictions can be phrased

and on the classes of items that can be processed in a similar fashion (i.e. by the

same subnetwork).
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It has been suggested by Ritchie [19] that this 'subroutine' mechanism

presupposes a syntactic organization of the grammar into subnetworks and that a

semantic organization could not be viable, "since semantic categories are not the

appropriate organizational units for an augmented transition network grammar."

However, I have found that the addition of meaning-based categories is not only

justified, but also superior to using only syntactic categories for embedded structure

processing in the Morse code radio network domain.

The chatter language is sufficiently limited, little syntax exists, and what does

exist is either weak or can be described in more revealing terms as a result of

semantic considerations. The language consists of only four generic types of words:

q-signs, pro-signs, call-signs, and abbreviations [2]. Q-signs are internationally

agreed-on abbreviations which were devised for radiotelegraph use. Each q-sign

represents a complete thought; e.g. "QSK" means "I can hear you between my

signals; break in on my transmission" and "QTQ ?" means "Can you communicate

with my station by means of the International Code of Signals?" The first letter in

every q-sign is 'Q'. Pro-signs, or procedure signals, also have precise definitions but

do not express complete thoughts and are closely related to network protocol; for

example, "AS" means "wait" or "stand by", and "AR" means "end of transmission".

Call-signs are station identifiers and serve as names of radio operators. The final

category consists largely of simple abbreviations of commonly used English words

and phrases; for example: "GA" means "go ahead", "NR" means "number", "OK"

means "okay" and "PSE" means "please". The frequency of these English

abbreviations is so low that an English-like syntax model could not be developed for

chatter.
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There are two types of syntactic rules. The first is characterized by the

following example: if either of the constructs "callsign DE callsign" ("Station

(call-signl>, this is station <call-sign2D") or "DE callsign" ("This is station

<ca//-sign>")2 occurs in 'a transmission, it occurs near the beginning of that

transmission. A 'transmission' is equivalent to a 'sentence' in spoken conversation,

and it does not necessarily include everything transmitted by a single operator

between signals from other operators.

The second type of syntactic rule is the order of the 'arguments' that follow

almost all q-signs and many other words, e.g. "QSL MSG NR 3 ?" ("Can you

acknowledge receipt of message number three?") and "QRZ ROCK 3500" ("You are

being called by Rock on frequency 3.500 kHz"). The definition of each q-sign

includes a set of informational 'slots' that should be filled by the q-sign's arguments

(for example, "QRZ" alone means "You are being called by - - - on frequency

- - - kHz"). However, "QRZ 3500 ROCK" is just as meaningful as "QRZ ROCK

3500", and the phrase may be transmitted both ways, so order isn't really very

important here. It is clear from these examples that these syntactic rules can easily

be reformulated in terms of the underlying semantics. The only syntax rule that

seems very strong is the fact that arguments always lfolo the word of which they

are arguments.

The first two constructs discussed above are different ways of identifying a

new operator as she begins transmission. Either can occur in any position where

self-identification of an operator is desired: logically this is at the beginning of a
2CATNIP's grammar uses the convention that any word in lower-case letters is a generic token,

which is replaced by an appropriate chatter word at parse-time.
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transmission by that operator. The syntactic rule is replaced by a more intuitive

semantic rule that groups the two phrases in the topical category "Identification of

Operators", denoted ID-OP in the grammar.

The number, type, and ordering of the argument words not only depend on the

lexical features of the particular word of which they are arguments but also are a

function of the context. For example, in the phrase "NR 1 GR 200 QTR 1500"

("[message] number 1, with 200 groups, at 1500 hours"), "GR" is followed by the

number of English words or code-groups in the next message. However, in a

transmission like "PSE RPT GR 10, 20, 30 OK ? K" ("Please repeat code-groups

10, 20, and 30. Okay? Over"), the arguments of "GR" are one or more numbers

separated by delimiters, referring to the previously sent code-groups in positions

(number1>, <number2>, ..., <numberN>. Thus the syntax of a word's arguments

depends on the current topic of discussion.

The potential of syntactic rules is further weakened by the spoken-language

aspects of chatter conversations, for example, the existence of noise words. These

include chatter words from both the pro-sign and abbreviation categories -- such as

"R" ("roger"), a pro-sign, and "NW" ("now"), an abbreviation -- that an operator

often sends as 'filler' while she is deciding what to say next. So another syntactic

rule might be that a noise word can appear anywhere in a transmission, except as

the last word in that transmission. However, most potential noise words can also

appear as meaningful words in various contexts, for example "R" might be the

response to "QRO ?" ("Shall I increase transmitter power?").

Noise words can appear at any time, because they are meaningless; this is a

semantic rather than syntactic consideration, so this rule may be reformulated as a
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semantic rule that allows meaningless words to appear in any context and requires

them to be disregarded by the information-accumulating mechanisms of the parser.

2.4 The Semantic Structure of Chatter Conversations

Although the syntax of chatter is weak, there is a strong semantic structure

imposed on Morse code conversations by radio network protocol. First, the

operators involved must establish contact with each other, and this is represented by

the CONTACT subnetwork in the ATN. Next, one operator prepares to send some

message, and then sends it, either as code-groups or English text; this is

represented by the TRAFFIC subnetwork.

Immediately following the sending of traffic, the receiver may ask to have

several words repeated and eventually acknowledges receipt of the message. This

process is modeled by the REQ-INFO subnetwork. The TRAFFIC and REQ-INFO

subnetworks are repeated until all operators have sent all their prepared messages.

Then the operators begin signing off, which usually involves negotiations regarding

re-establishment of contact at some future time: this is represented by the

END-CNCT subnetwork. At this point, the conversation may terminate, or one of the

operators may continue by trying to establish contact with a new operator.

With one major exception, these four topics are the only possibilities for

discussion and they always occur in this rigid order. The exception is the 'Interrupt

Subnetwork', denoted INTRUPT in CATNIP's grammar, which can be pushed to

(called) from any state and represents an interruption in the smooth flow of

transmission. The possible types of interruptions include a third operator suddenly

breaking in on a conversation; sudden static on the air waves, which must be dealt

with by changes in transmitter characteristics or frequency; and so on. These
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interruptions are very difficult to parse since the context is made invalid by the break,

and this presents an interesting problem for the parser designer. However, to make

the problem addressed in this report more tractable, I have ignored the 'interruption

problem'.

The four main areas of discourse are broken down into additional subnetworks

based on topical categories. For example, CONTACT has transitions indicating

pushing to (calling) the lower-level subnetworks ID-OP (identification of operators),

NET-RELAY (relay of operator identification through the network controller), and

QUAL.CNCT (discussion of signal characteristics). It is only within these

lowest-level subnetworks that syntactic structure shows up, for example, in the

ordering of q-sign arguments, but, as discussed above, this structure results from

semantic as well as syntactic considerations.

The semantic category of a push (call) specification fulfills its role as a

top-down prediction that a particular topic will be discussed at that point in the

conversation, and of course it indicates which subnetwork is to be used to process

phrases discussing that topic. Semantic categories are more suitable for this

application than syntactic categories due to the limited syntax of chatter and the

strong protocol constraints on the discourse structure of a conversation.

The semantic organization of this ATN grammar not only is very unusual but

also plays a unique role in the partial and limited solution to the grammatical

inference problem discussed in the next chapter.
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3. Grammatical Inference of ATNs

3.1 The Grammatical-Inference Problem

Scientists have been using formal linguistics for modeling natural and

programming languages for over twenty years [14]. Grammars have been employed

to describe the syntax of languages like chatter and can be used to characterize a

syntactic source that generates all the sentences in a language. It would be useful if

the grammar could be directly inferred from a set of sample sentences in the

language in question. The process of deriving a grammar from a set of examples is

called grammatical inference.

The general grammatical-inference problem is simply stated. Assume the

existence of a source that generates strings of the form x = ala 2...an, where x is a

sentence in a language L and each ai is a word in the lexicon of L. L is assumed to

possess some unique structural features that can be modeled by a grammar G. The

grammatical-inference machine is given a finite set S' of sentences that are in L,

and possibly another finite set S' of sentences that are not in L. Using this

information, the machine must infer the syntactic rules of the unknown grammar G.

The first difficulty encountered is the necessity of obtaining extra information

in order to find an appropriate set S. Although the set S + can be obtained from the

source, the set S can be defined only if an external teacher, who knows something

about the properties of G, is available. Unfortunately, without S-, the

grammatical-inference problem is unsolvable except for a small number of highly

constrained grammars [8]. The chatter language has this problem, because, with no

formal definition, there is also no algorithmic means for determining that a given
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string of chatter words is not likely to be transmitted over Morse code networks, or

even for deciding whether a given word (that is not a q-sign) is in the chatter

vocabulary.

Even though it is impossible for a grammatical-inference machine to find

exactly one grammar for most languages without this negative information, it is often

possible to enumerate a large set of possible grammars and then narrow down the

solution in some way to a single grammar. A grammar is 'possible' in this sense if it

accepts the sample. The problem of narrowing down the state-space to one

grammar has been solved for regular languages, the very simple languages that can

be generated by regular expressions and accepted by finite state machines (FSMs).

The limited case of regular languages is solvable because two finite state

machine grammars that generate the same language are equivalent. Since all of the

accurately enumerated grammars are equivalent, only one need be constructed, and

it is the correct solution. Feldman et al. discuss the concepts involved [12], and two

algorithms are presented by Biermann and Feldman [3].

However, these algorithms cannot be utilized to extend the grammar for

chatter, since the nesting features of natural language are not adequately

represented by finite state machine grammars. Chatter can be considered a natural

language, because its representation requires nested structures, which are

represented by the subnetworks of the ATN knowledge base,3 and because it is an

evolving, 'spoken' language.4

3 Section 2.4
4The similarities between chatter and natural languages like English are discussed further in

Section 4.3.
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The context-free languages are more powerful than regular languages,

because they can model the self-embedding and nesting properties of natural and

programming languages. They can be represented by grammars whose production

rules are of the form A --> a, where A is a single nonterminal symbol and a is a string

of terminal symbols and nonterminal symbols [1]. A terminal symbol is an element

from the language being modeled. Since the left-hand side of the rule contains a

single symbol, no context is necessary to determine the derivation of a sentence.

Context-free languages are accepted by transition networks (TNs).

It is considerably more difficult to derive grammars for context-free languages

than for regular languages, because an infinite number of possible grammars can be

enumerated for any set of data. No algorithm exists that can decide whether two

arbitrary context-free grammars accept the same language. Some mechanism is

needed that limits the number of grammars produced to a tractable level and then

selects one of them that is 'best'. Such a mechanism is termed an 'evaluation

measure'.

One approach to solving this problem is to look for a reasonably good fit, with

some suitable definition of 'reasonable', rather than trying to find a grammar that

generates exactly the input sample. Cook states [7] that an infinite language, i.e. any

language that includes an infinite number of sentences, assures a discrepancy

between a grammar inferred from a finite sample and the grammar for the language.

He used a cost function measuring the tradeoff between decrease in complexity and

increase in discrepancy to bound his machine's search-space. The machine

described by Wharton [22] uses a similar evaluation measure, but it receives its

examples via a multi-step method rather than all at once; this methodology tends to

iL.. . II II . . Iil 1 L ..



increase the efficiency of enumeration but cannot guarantee minimum complexity in

the ultimate result.

Another approach is to require a human 'teacher' to guide the grammatical

inference machine as it enumerates possible grammars and select the 'best'

grammar according to some subjective measure. In the scenario developed by

Knobe and Knobe [17], the teacher is a knowledgeable person who provides

individual examples in optimal order with optimal variety, and who can recognize

grammatical and ungrammatical strings without knowing the formal grammar for the

language. The machine enumerates first general and then more specific

productions, and each production is tested by the teacher as it is enumerated. The

machine retains the most general rule that does not produce any strings ruled illegal

by the teacher. This scenario places a heavy burden on the teacher to present an

adequate 'course'.

A third approach, described by Crespi-Reghizzi [8], attaches structural

descriptions to the examples. This limits the number of hypotheses that are

compatible with the data and thus reduces the enumeration problem. The extra

information, although similar to the type of information required by the

complexity/discrepancy measure and the teacher's judgements above, must be

justified, since it departs from the standard model of grammar acquisition.

Crespi-Reghizzi explains that this structural information is similar to the stress and

intonational information available to a child acquiring a natural Ianguage, and that

the widespread belief that there must be a partially semantic basis for the acquisition

of syntax implies the availability of some structural information to the learner of a

language. Of course, the availability of structure vastly reduces the number of
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alternative possible grammars and assures that the acquired grammar generates

sentences with structures consistent with their meaning.

The grammatical-inference machines described above are all successful for

subsets of the context-free languages. However, there is as yet no algorithm that can

infer the complete set of rewriting rules from a positive sample of an arbitrary

context-free language [6]. It is not surprising that no general mechanism has been

developed for grammatical inference of supersets of the context-free languages,

particularly the context-sensitive languages, which include all natural languages.

Now, the context-sensitive are even more powerful than the context-free

languages. They can be represented by grammars with production rules of the form

a --> b, where both a and b consist of any number of terminal and nonterminal

symbols; the length of a must be less than or equal to the length of b [1]. Since the

left-hand side of a rule may include more than one symbol, context is necessary to

determine the derivation of a sentence. The context-sensitive languages are

accepted by augmented transition networks (ATNs). All natural languages are

members of the set of context-sensitive languages: contextual information is

necessary to parse constructs such as reflexives and rlative clauses in English.

3.2 Grammatical Inference and MAGE

This report describes a grammatical-extension machine for an augmented

transition network grammar for a very limited 'natural' language. Since augmented

transition networks represent and are equivalent to the context-sensitive grammar,

the development of MAGE is a small step toward a general solution to the very

difficult problem of inference for context-sensitive grammars.

There are three ways in which this machine's model of the
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grammatical-inference problem diverges from the standard model discussed in the

first section of this chapter. The first is that MAGE's grammar is not inferred from

scratch but builds on a core grammar, which includes a small transition network, a

set of pre-coded functions for the tests and actions, and a dictionary of q-signs (but

not other chatter words).

The second difference is that the grammar is extended incrementally; that is,

each example is successfully learned before the next example is provided. This

makes the inference problem more difficult than usual, because MAGE cannot

exploit structural similarities between examples when determining the embedded

structure of the grammar. The incremental feature is necessary in the Morse code

domain, because a structurally complete sample is required in order to derive a

complete grammar for any language [6]; a positive sample of a language is

structurally complete if each rewriting rule of the grammar is used at least once in

the generation of the sample. It is impossible to generate a structurally complete

sample of chatter, because no formal grammar exists, and the language is

continuously evolving. In other words, since the grammar can never be complete,

the extension mechanism must always be ready to add one more example to the

grammar.

The third difference is a result of the second: the extension procedure is not

expected to result in an exact grammar for the language that is equivalent to some

known formal definition. The best that the system can do, given the constraints of the

domain, is to generate an extended grammar that understands all sentences it

received as examples, plus a large number of similar sentences.

Keeping in mind these deviations from the standard grammatical-inference
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model, the computer program the author has developed is successful at what it tries

to do: extend an augmented transition network grammar for the limited Morse-code

domain. MAGE is an enumerative procedure in the sense that it considers many

potential additions to the grammar for each example it is supplied. However, the

evaluation measure guides the enumeration of possible extensions, and each

enumerated extension is selected or rejected before the next extension is

postulated. As soon as one extension has been approved, the enumeration process

halts. Thus all but the ultimate result are rejected before any data structure Is

generated. Since only one 'physical' grammar exists at any point in time, and

extensions result in physical alterations of this data structure, the program may be

considered a constructive model.

3.3 Hypothesis Formation and Selection

There are two phases to the hypothesis-formation/hypothesis-evaluation

process. The first is the selection of a structural extension to the transition network,

to result in a grammar that can accept the current example. The second is the

specification of a set of tests and actions to be attached to the transition network, to

enable the parser to understand the current example. These processes are

independent and sequential, and they are presented here separateiy.

MAGE operates on a transition network grammar (it ignores the tests and

actions during this phase) consisting of thirteen topically categorized subnetworks.5

Given an example transmission, or an example conversation containing one or more

5The 'interrupt Subnetwork' and the five related subnetworks of CATNIP's grammar are not part of
MAGE's core grammar, because the current version of MAGE does not deal with the interruption
problem.

. . . -- • '
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speaker changes,6 the program first determines if the example is already accepted

by the grammar, by attempting to parse it. MAGE tries to match the example to the

grammar using a standard transition network parsing algorithm, with one deviation:

rather than requiring a single start-state, the parser performs a depth-first search

from several potential start-states, including all states that can precede the

beginning of a transmission. An example should not begin in mid-transmission,

although the program can handle this in some instances. The parse is

nondeterministic, i.e., conceptually it follows many paths in parallel (although it

actually uses a depth-first search), because the grammar may contain more than one

subnetwork representing the same subsequence of tokens or words, as do many TN

and ATN grammars.

If the example is already accepted by the grammar, the program prints an

appropriate message and asks for another example. If the first word or words of the

example are accepted by one or more subnetworks, but the following word does not

match any transition leaving the last state of any of these partial paths, the

hypothesis-formation procedure takes control with pointers to the

'last-matched-states' and the next word in the example. The same sequence of

words may be accepted by more than one subnetwork, because the parse has

multiple start-states and the grammar is inherently nondeterministic. If the first word

of an example is not accepted by any transition leaving any start-state, the set of

'last-matched-states' in this case consists of the possible start-states discussed

above, and the next word in the example is the first one.

6A 'speaker change' occurs in a Morse-code conversation when one operator ceases transmitting
Morse code and another begins.
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At some point in the example, marking the end of the new phrase, the words of

the example resume matching the symbols on the transitions of the TN. This may

happen at more than one state, for the reasons stated above. If the new phrase is at

the end of the example, it matches any terminal state in the transition network by

default. The state(s) containing the transition(s) where the path resumes and the

terminal state(s) matched by default are called the 'end-of-phrase' states. The task

now is to add some structural representation of the words between these matches

(the new phrase) to the transition network component of the grammar. MAGE uses

the models presented below to accomplish this objective.

The set of models represents all single-transition extensions to the general

three-state finite state machine shown in Figure 1, with several exceptions: it is

undesirable to return to a start-state from some other state in the subnetwork except

in a small number of prescribed circumstances; it is preferable for a subnetwork to

contain a terminal state, and then repeat the entire subnetwork, rather than return

from that state to the start-state. A single subnetwork without tests and actions is an

FSM. Model 0 (Figure 1) represents the original status of a subnetwork: the circle

containing S is a start-state; the circle with the darkened area is a terminal state; the

single intermediate state represents the arbitrarily complex web of states and

transitions between the start-state and a terminal state in an actual subnetwork.

Each of the models illustrated in Figures 2 through 8 represents a general

one-transition extension to model 0. All extensions that are possible, considering the

chatter domain, are included in this set. Any of the three circles in these models that

correspond to the original circles in Model 0 may represent a 'last-matched-state'

and any terminal state may represent the 'end-of-phrase', depending on the
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particular model and circumstances; a circle other than the original three always

represents a new circle added to the subnetwork as part of the extension. Since

each example is expected to include only one new phrase, only one type of

extension is actually used for each example. However, the new phrase generally

consists of more than the single word that can be attached to a single transition. The

transition can be viewed as modeling a string of transition/next-state pairs, with the

first transition in this string leaving a state in the original subnetwork as shown in the

model, and the final transition connected to the next-state shown in the particular

model.

I MODEL 0 ]

Figure 1: Model 0
General subnetwork

I MODEL I1

Figure 2: Model 1
'Last- matched -state' becomes terminal state
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[MODEL 2]

Figure 3: Model 2
A terminal state that is also a 'last-matched-state'

becomes a possible intermediate state

3

[ MODEL 31

Figure 4a: Model 3
State(s) inserted parallel to transition between adjacent states,

which are 'last-matched-state' and 'end-of-phrase'
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3

C MODEL 31

Figure 4b: A special case of Model 3

I MODEL 4 ]

Figure 5: Model 4
Transition loops to same state, which is both

'last-matched-state' and 'end-of-phrase'

[MODEL 51

Figure 6a: Model 5
Transition returns from 'last- matched -state'

to previously visited state

Il i. .. . . . . .. il . . .. . . . .
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(MODEL 5)

Figure 6b: A special case of Model 5

1 MODEL 63

Figure 7a: Model 6
Completely new path is formed in subnetwork
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E MODEL 6]

Figure 7b: A special case of Model 6

CMODEL 7]

Figure 8: Model 7
New transition added between 'last-matched-state'

and new terminal state

MAGE compares each model to each last-matched-state/end-of-phrase pair.
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The hypothesis-formation procedure enumerates a set of model/pair combinations

called 'templates', matching particular states in the model to the last-matched-state

and end-of-example of the pair. The first component of the evaluation measure

guides this process, restricting it to enumerating only those models that provide a

means for accepting the new phrase in the finite state machine sense: the first word

in the phrase matches some symbol attached to a transition leaving the start-state of

the extension derived from the model, the second word matches some transition

leaving the state pointed to by the transition for the first word, and so on. The state

pointed to by the transition matching the last word in the new phrase must either be

a terminal state or contain a transition that matches the first word in the rest of the

example, which follows the new phrase.

If there is only a single last-matched-state, and only one of the above models

provides a mechanism for accepting the new phrase, then this model is subjected

immediately to the second component of the evaluation procedure. If this model

also provides a mechanism for accepting the new phrase in the context of the

current example, i.e., the entire example would be accepted by the core grammar

plus this extension, 'ien the evaluation is said to 'succeed', and the extension is

physically added to the data structure representing the transition network

component of the grammar. In this case, the test/action phase of the

hypothesis-formation mechanism begins operation. If the evaluation fails, the

example is rejected as unlearnable,

If the structure of the example matches one of the above models, but there are
7 The author has not found any actual transmissions that contain phrases that cause MAGE to fail,

with the exception of transmissions containing one of the interrt ptions discussed in Section 2.4.
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several last-matched-states, then the evaluation measure selects the first of these

states that passes its criteria. This selection is justified, because in nearly all

instances the first passing state is the only one: conflicts are prevented by a strict

ordering of the start-states via the subnetwork in which each appears.

There are several situations in which more than one model is represented in

the templates produced by the hypothesis-formation process, and in these cases the

evaluation measure must select a model as well as a particular state pair. Consider

the example "QSA 5 NW QTC K" ("The strength of your signals is excellent now. I

have messages for you") diagrammed below, and assume that "QSA 5 QTC K"

("The strength of your signals is excellent. I have messages for you") is already

accepted by the grammar. It is not clear during the hypothesis-formation stage

whether to apply model 2 (Figure 9a) or model 3 (Figure 9b). Therefore, both of

these possibilities are passed to the evaluation measure, which chooses between

them on the basis of which transmission 'makes sense'.

E EXAMPLE ]

Figure 9a: Model 2 applied to example

ii I1
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Figure 9b: Model 3 applied to example

In this case, model 2 wins, because the evaluation measure decides that "NW"

refers to "QSA" rather than to "QTC". "QSA 5 NW" ("The strength of your signals

is excellent now") is a plausible update to an earlier transmission like "QSA 1" ("The

strength of your signals is very poor").8 However, "NW QTC" ("Now I have

messages for you") would not make sense unless the operator had previously

transmitted something like "Wait. I will have messages for you soon": this statement

cannot be made with the phrases contained in the core grammar. Of course, the

extended grammar still accepts "QSA 5 QTC K" because the terminal state following

the generic token "#" is not deleted. In fact, nothing is ever deleted from the core

grammar; the only alterations performed by MAGE are additions.

After a specific structural hypothesis has been selected by the evaluation

measure, the machine enters its second hypothesis-formation phase and

8If "OSA 5" is accepted by the core grammar, "OSA 1" is also, since the generic token '#'

matches any number.
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enumerates a set of potential test and action specifications for each transition of the

new extension. If the symbol on a new transition is a q-sign, those actions associated

with q-signs are enumerated; none of the prepared tests should be associated with

transitions whose symbols are q-signs. The q-sign actions put information conveyed

by q-signs and their arguments in certain registers:

<quality-of-contact >

<pending-questions>
<expected-actions>
<general-situation-description).

If the transition symbol is some other type of word, but not a 'noise' word, the

entire set of non-q-sign actions is enumerated. These actions put information in

other registers, including:

<information -about-receiving -operator>
<information-about-sending-operator>
<id-number-of -message>
<number-of-words-in-message>
<number-of -words-received-so-far-in-message>
and others described in Appendix Ill.

If the symbol is a generic token, i.e. "callsign", "any", " #", "delim", or "location",

the entire set of tests is passed to the evaluation measure. These tests serve as

filters to ensure that the chatter word that matches a generic token is reasonable in

context, to prevent every random word from matching "any", for example, since this

symbol is intended to match only code-groups or English words in a message body.

The tests and actions to be associated with the new transition(s) are now selected by

the evaluation measure.
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3.4 A Unique Evaluation Measure

The evaluation component of MAGE is rather unusual in that it does not

incorporate a cost function or other complexity-related consideration to select the

'best' from among the set of possible structural extensions or test/action

specifications, nor does it use some subjective measure produced by a human

teacher. Instead, the evaluation measure is based on the semantic organization of

the augmented transition network grammar.9

The criterion for selecting a structural extension is simply: "Will this structural

extension place the new phrase in the correct topical context?". Similarly, the

criterion for augmenting a transition with a particular test or set of tests is: "Will this

test or set of tests ensure that all words accepted by this transition are meaningful in

the current context?". An action or set of actions is approved for a transition if those

actions will select and save the important information contained in the phrase and

ignore any meaningless words.

The first criterion is fairly simple to implement for phrases containing at least

one q-sign, because all q-signs are associated a priori with appropriate topics

represented by subnetworks. There are usually two or three subnetworks in which a

particular q-sign might make sense, but the context of the rest of the example

provides enough information to uniquely determine the topical category of the

phrase.

Those phrases that contain neither q-signs, nor other words that are known to

be synonymous with a particular q-sign (e.g. "RPT" ("repeat") is synonymous with

9 Section 2.4
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"QSM" ("Please repeat - - -")), are more difficult to evaluate. When an example

contains an unknown word, MAGE asks the user if it is a synonym of any known word

and, if so, which one.' Either the new word has a known synonym, or one or more of

the other words in the phrase have known meanings that can be used to determine

the meaning and topic of unknown words; this topical relation is used to place the

new phrase in the appropriate subnetwork (i.e. context).

The selection of tests and actions proceeds along similar lines. Most tests are

attached only to transitions with a generic symbol; most actions are attached to

transitions with the symbol "new-speaker" (denoting a speaker change), a generic

symbol, or a q-sign. In addition, the evaluation measure may attach actions to most

symbols in the REQ-RPT subnetwork (request for something to be repeated and

response to request) even though they were not generated during the

hypothesis-formation phase; it is desirable to store any repeat request until it has

been answered, regardless of how the request was phrased. This is one of the many

semantic considerations dealt with by the evaluation measure.

The likely number and type of arguments for each q-sign are part of the

machine's domain model, and they can be looked up in a table. This knowledge is

used to attach actions to the transitions of q-sign arguments that convey information

that should be stored in some register. In some cases, however, a q-sign may appear

with a totally unexpected set of arguments, and the appropriate actions must be

inferred from knowledge about the arguments themselves. The generic tokens

"call-sign" and "any" appear in only a small number of contexts (the ID-OP and

10User-machine interaction is discussed further in Section 5.2.1.

I, l ~ rl" , . . , ,, r ==. . . . II I
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NET-RELAY subnetworks and as q-sign arguments, and the MESSAG and

REQ-RPT subnetworks, respectively), so their tests and actions can be effectively

pre-programmed.

The major difficulty is with the generic token "# ", which can appear in almost

any context and almost always has some important meaning. Fortunately, "#" is

often preceded by some other word with associated test/action information that can

be transferred to its argument. But in many cases there is no way of obtaining this

information except to compare the particular use of "#" with its appearance

elsewhere in the grammar, and to borrow the actions associated with the closest fit.

This method is actually very successful at selecting the same set of actions that I

would have selected by hand.

After this component of the evaluation measure has approved a set of

test/action specifications for each transition in the previously selected structural

extension, the specifications are attached to the extension and the data structure

representing the ATN grammar is 'permanently' altered to include the completed

extension. The addition is permanent in the sense that it can now aid in a future

bootstrap process as described above.

The use of semantic information by MAGE's evaluation measure is similar to

Crespi-Reghizzi's use of structural information [8] for the inference of context-free

grammars. 11 The major difference is that Crespi-Reghizzi includes a complete

structural description with eah of his examples. MAGE requires analogous

information; however, all semantic/syntactic structure is pre-programmed into the

Discussed in the second section of this chapter.

Ih L . . . . . . . . . . . ,. . ... .
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domain model of MAGE, and the program itself selects the structural information,

which includes meaning and topic in this context, that should be associated with

each example.

The use of semantics to construct and evaluate extensions to a grammar is

also related to some proposed linguistic models of human language acquisition. The

viewpoint that considers MAGE an implementation of these models is discussed in

the next chapter. A sample learning session with MAGE is given in Appendix II.
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4. Acquisition of Language and Grammatical
Extension

4.1 A Model of Language Acquisition

There has always been considerable debate among linguists about the

process by which children acquire their native language. Most models represent

language learning as an active process of hypothesis-formation and

hypothesis-testing: the child continually formulates hypotheses about the language

she hears and tests them by attempting to use them to understand speech and to

construct her own sentences. The child is not initially presented with the entire

language but with a small subset of the vocabulary and syntax which gradually

expands as her competer ice increases [22].

According to a model discussed by Dale [91, a hypothesis is confirmed if it

accounts for the data already available and successfully predicts future sentences;

otherwise it fails. However, a verdict of success or failure is according to the child's

perceptions of language, not an adult's. A grammar that generates the sentence

"Shoes on" would be unacceptable to an adult, yet it is considered successful by the

two-year-old child who hears "Put your shoes on" as "Shoes on". Hypotheses thus

confirmed become part of the evolving grammar used by the child. This grammar is

descriptively adequate, which means it makes 'accurate' predictions about the

correctness or deviance of sentences that the child has never heard before, as well

as being observationally adequate, which means it accounts for all the sentences

that have already been heard.

According to a similar model developed by Chomsky [4, 5], not only does the
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observationally adequate grammar account for the observed sentences in the sense

of recognizing their structural organization, but also it makes it possible for the child

to understand the meaning of these sentences. Likewise, the descriptively adequate

grammar is capable of understanding infinitely many sentences that the chii,. has

never heard.

This model makes the controversial proposition that the child may know about

certain aspects of language: some knowledge is innate, and the child need not learn

these aspects in the usual sense. These innate aspects of language are called the

universal grammar and, according to the model, form the basis for hypothesis

formation and evaluation.

Chomsky's model is founded in the rationalist school of linguistic thought,

which states that the structure of language is to a considerable degree specified

biologically, and the function of experience is to activate this innate capacity and

turn it into linguistic competence [4]. The rationalist claims that a great deal of

psychological structure is innate and that the human child has a specific, and strong,

capacity for language. These ideas are supported by the species-specific and

species-uniform attributes of language, i.e. all humans and only humans use

language, and by the surprisingly small degree of difficulty a child has with the

general mechanisms of language: the notion of a sentence, the establishment of

word classes and rules for combining them, and so forth.

The rationalist theory postulates the existence of a universal grammar, such

that a successful model of a universal grammar would include exactly those features

of language that children do not have to learn and would exclude all the unique

features of their particular languages that children must acquire from the speech
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they hear. It is a system of principles that categorizes the class of possible grammars

by specifying how particular grammars are organized, how the different rules of

these components are constructed, and how they interact.

The theory proposes two types of universal features: substantive and formal.

The set of substantive rules includes claims that items of a particular kind in any

language must be drawn from a fixed class of items. The formal linguistic universals

include more abstract conditions involving the character of the rules that appear in

grammars, conditions imposed on these rules, and the ways in which they are

interconnected. For example, every human language utilizes the same basic

grammatical categories (substantive) -- sentences, noun phrases, verb phrases, etc.

and uses the same grammatical relations among these categories (formal)

subject and predicate, verb and object, etc. [18].

According to these models, the task of the child acquiring a language is to

choose from among those grammars allowed by the principles of universal grammar

that grammar that is compatible with the limited and imperfect data available to her.

The child is faced with a finite set of utterances, many of them ungrammatical (due to

slips of the tongue, false starts, memory lapses, etc.), that she has heard from her

parents and other people in her environment. From these utterances, she must

deduce the underlying rules in order to use her language.

The concept of a restrictive, universal mold for grammatical development is

supported by the similarities observed by Dale [9] between the early speech of

children in different cultures learning widely divergent languages. According to his

observations, a child's earliest grammar usually includes a two-word syntactic

structure with two classes of words, pivot and open. The pivot class is small and
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each word in it is used with many different words from the much larger open class.

For example, an English-speaking child might say "bandage on", "blanket on", "fix

on", etc. For this child on is a pivot word; it is always used in the second position and

many other words can occur with it. Or the child might say "allgone shoe", "allgone

lettuce", "allgone outside", and others; here "allgone" is a pivot that always occurs

in the first position. A pivot word may be the first or the second element in two-word

utterances, but each pivot word has its own fixed position.

As the child grows older and has more experience with her language, she

begins to use three-word sentences that are simply pivot-open sentences with an

additional word. Agent-object and agent-action constructions merge into the more

complex but more meaningful agent-action-object construct. Eventually the child

develops the concepts of noun phrase, verb phrase, and all the other complex

syntactic structures of the English (or other natural) language.

Although MAGE borrows from these theories of language acquisition and

universal grammar, this report is not related to the controversy surrounding these

models and rationalist theory in general. The author does not intend the analogy

between MAGE and these models (presented below) as an endorsement of any

linguistic theories; the analogy is provided as a vehicle for putting in perspective the

mechanisms used by MAGE. It may be useful to consider MAGE an implementation

of some aspects of these models.

Although an ATN grammar comprises a large portion of MAGE's 'universal

grammar', the author does not believe that the augmented transition network

formalism is in any way related to the internal organization of the child's grammar.

Dresher and Hornstein [10] describe the claims of some linguists that experimental

L .. . . . " . . . . .... , ~ r * , . . . .... _ .. ^ . ... . .. .
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evidence supports the view that the ATN model is a psychologically realistic model of

certain aspects of human linguistic comprehensions; Dresher, Hornstein, and many

other linguists disagree. This report is not related to these debates.

Throughout the rest of this chapter, the term 'the child' refers to the human

language acquisition mechanisms postulated in the proposed linguistic models

discussed above. The author does not claim that the grammatical extension process

implemented as MAGE is in any way related to real children, or the unknown

processes through which they learn language.

4.2 The 'Universal Grammar' of MAGE

Several aspects of these models are 'implemented' as components of the

grammatical extension machine: MAGE forms hypotheses that attempt to account

for the data it receives. The hypotheses are derived from the program 'universal

grammar', which consists of knowledge of the domain and the properties of the

grammar it is extending. The kinds of hypotheses that MAGE can formulate are

constrained by the set of general extension models, or 'universal rules', presented in

Section 3.3. MAGE tests each hypothesis by determining whether it is adequate to

'understand' the example that motivated it. If a hypothesis is inadequate, another

hypothesis is formulated and tested until the program has found an extension that

enables it to parse the example. 12

The domain knowledge of MAGE is very similar to the model of a universal

grammar presented above. Although the program might be presented with samples

from any of a variety of 'dialects' of chatter (e.g. ham radio, military, diplomatic,

12This process is described in detail in Sections 3.3 and 3.4.
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shipping), the extended grammar will conform to the universals of the radio domain

and of the augmented. transition network representation for the grammar. I
The radio-domain universals include the structural constraints such as

network protocol, which limits the types of things that can be 'said' during

conversations, and results in the rigid topical breakdown of the ATN into the

CONTACT, TRAFFIC, REQ-INFO and END-CNCT subnetworks and the

hierarchical organization of these subnetworks into topical subdivisions. These rules !
are analogous to the formal universals described in section one of this chapter,

because they not only constrain, but also define, the character of the grammar.

The Morse code domain also specifies the 'syntax' of q-sign arguments, the

existence of 'noise' words, and the internationally defined q-signs. These rules are

analogous to the substantive universal rules, which include assertions that structural

components and semantic elements must be drawn from prescribed classes. 13

The built-in ATN also constitutes a set of 'formal universals', which constrain

the character of rules that can appear in grammars, since it rigidly defines the type of

grammar the program was designed to extend. The ATN model prescribes the types

of things that can be stored in registers, what tests and actions can do with registers,

and the push and pop (call and return) mechanisms and embedded organization of

subnetworks into a transition network grammar.

13 The domain aspects listed here are discussed in depth in Sections 2.3 and 2.4.
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4.3 Hypothesis Formation and Evaluation

For each example transmission, MAGE formulates a set of hypotheses for

extending the syntactic/semantic structure of the ATN, plus a set of hypotheses for

adding function specifications to extract the meaningful content of the example. The

mechanisms used here are similar to the linguistic models described in the first

section of this chapter. According to those models, the rules formulated by the child

must meet the universal conditions imposed on the character of grammatical rules;

likewise, MAGE is limited to the forms provided by the set of models illustrated in

Section 3.3. Neither the 'model child' nor MAGE is even capable of considering

grammatical hypotheses that do not meet their constraints.

The proposed linguistic models predict that the child will ignore sentencoe

whose structure and/or vocabulary are too unusual, too different from what she

already knows; MAGE returns a verdict of 'unlearnable' every time it receives a

difficult example, until it has acquired enough vocabulary and contextual structure to

simplify the learning of this example to the matching of one new phrase to its

hypothesis-formation models. Both MAGE and the 'model child' learn by a bootstrap

process. As MAGE is exposed to more and more example transmissions, the

conversations it can parse become more complex.

The core grammar of the grammatical-extension machine is similar to the pivot

grammar discussed by Dale [91, in that most chatter phrases revolve around one

'pivot' word, often a q-sign, that determines the meaning of the other words. The

ability to associate pivot words with only one or two potential subnetworks, coupled

with the ease with which most pivot words are recognized (e.g. all q-signs begin with

the letter 'Q'), is probably the most important feature of MAGE's evaluation measure.

LI_
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Without this ability, the selection mechanism would probably have to rummage

through each of the thirteen subnetworks, possibly during several passes, to find the

'best fit' for each example.

The model of a hypothesis-selection mechanism proposed by Chomsky [4, 5]

and discussed further by Dale [9], which would accept only those hypotheses that

make it possible for the 'model child' to make sense of an utterance, according to

her perception of 'sense', is analogous to the evaluation measure utilized by MAGE:

a hypothesis is accepted only if it provides a parser with the ability to understand the

example transmission. Extensions to the grammar are made in such a way that

learning one new sentence actually results in the power to understand arbitrarily

many new sentences, since many paths through the ATN may follow the new

transitions. Thus the resulting grammar is descriptively adequate; theorists claim that

a human grammar developed according to their models would also be descriptively

adequate.

MAGE does not use any of the Darticular universal rules postulated by linguists

attempting to explain the very complex processes of language acquisition by

children, nor does it copy the specific tenets of any of the theorized universal

grammars (no one knows exactly what the universal grammar used by children

actually consists of, or even whether it really exists). What MAGE does do is

implement the concept of a universal grammar, with universal rules that severely

constrain the development of a grammar that accepts the particular dialect of

chatter being learned. MAGE also implements the idea of selecting only those

hypotheses that provide an accurate mech,inism for 'understanding' -- or in this case

extracting the important information from ? c, -ntvating example(s).
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5. MAGE: A Learning System

5.1 A Model for Learning Systems

The organization of the computer program was strongly influenced by the

research described by Smith et al. [20], and MAGE conforms closely to their model

of a learning system. The model details the functional components felt to be

essential for any learning system, independent of the techniques used for its

construction and the specific environment in which it operates.

Smith et al. define a learning system as "any system which uses information

obtained during one interaction with its environment to improve its performance

during future interactions". The performance of MAGE complies with this definition,

as any examples that a, a added to the grammar's understanding capability are also

used by the bootstrap process to extend the grammar to accept future examples.

The learning system model proposed by Smith consists of six elements. The

Instance Selector selects suitable training instances from the environment. The

Performance Element generates an output in response to a training instance. The

Critic analyzes the output of the performance element in terms of some standard of

performance. The Learning Element makes specific changes to the system in

response to the analysis of the critic. The Blackboard contains system information,

e.g. the emerging knowledge base, that is used by all functional components. Finally,

the World Model contains the general assumptions and methods that constrain

system activity.

My experience with MAGE conformed to this model in one additional way: as

designer, I viewed the entire learning system as a program whose performance
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needs improvement, and I selected instances, criticized performance, and made

changes accordingly. In other words, the designer's activities can be modeled by a

system whose components are identical to those described above. This leads to the

interesting concept of layered learning systems, each higher layer able to change

the world model (vocabulary, assumptions, etc.) of the next lower layer on the basis

of criticizing its performance on a chosen set of instances.

5.2 MAGE Components

5.2.1 Instance Selector and Blackboard

The Instance Selector performs the trivial operation of accepting whatever

example the user provides and transforming it to the proper data structure for system

manipulation. It may request the user to answer certain questions about the current

example. For example, if the current example were "VVV ROCK DE SALT QSA ? K"

("Rock, this is Salt. What is the strength of my signals? Over"), the Instance

Selector would look up each word in the vocabulary list of the World Model and find

that "VVV" is an unknown word. It would print: 'VVV' IS AN UNKNOWN WORD.

DOES IT HAVE A SYNONYM ON THE FOLLOWING LIST? (followed by the list). The

operation of MAGE on this example is described in Appendix II. The Instance

Selector provides half of the user-program interface.

The other half of the user-program interface is the Blackboard, which prints

statements about each extension the program makes to the grammar, e.g.

[Adding new transition 'VVV' from state 0 to 0 of ID-OP]

(the result of the above example). In addition, all communication between modules Is

considered part of the Blackboard. Most communication takes place via standard

6A.
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passing of arguments, and use of the same variables when parts of one module are

embedded inside another. There are also some global variables that designate what

portions of the grammar have been altered during this learning session and other

dynamic information.

5.2.2 World Model

The World Model contains the universal grammar, 14 which includes all

knowledge MAGE has about the Morse code radio network domain. The core

grammar is considered a component of the World Model. It contains the

subnetworks diagrammed in Appendix Ill, but not any alterations that have been

made during the current learning session: these belong to the Performance

Element. The World Model has some concise, hand-gathered collections of

informational items that are distributed throughout the core grammar and would be

difficult to find without these indices, e.g. the set of all subnetworks and symbols that

can immediately follow any terminal state in the QUAL-CNCT subnetwork.

The World Model also includes a set of specifications for the tests and actions.

A 'specification' describes in what circumstances the test or action should be

associated with a transition and what arguments should be passed to the pre-coded

function that implements the test or action.

The spellings of sixty q-signs are known a priori by the system. Each q-sign is

associated with one or more topical subnetworks and a possible argument syntax.

However, only five of the sixty q-signs appear on transitions in the core grammar,

and MAGE must receive at least one example for each of the other q-signs in order

14Section 4.2
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to understand conversations- containing that q-sign. A synonym table, which

includes all q-signs and all other vocabulary contained in the core grammar, is

maintained.

5.2.3 Performance Element

The Performance Element consists of two components: a TN parser and the

current version of the ATN grammar. The TN parser is based on the ATN parser of

CATNIP [16], but it does not save nor use any contextual information, since it is only

trying to accept a sentence or conversation rather than trying to comprehend it. It

doesn't need tests to determine which words should be accepted by a transition with

the symbol "any" because all code-groups and English words are written as "any" in

the example. There is no reason that MAGE needs to recognize code-groups and

English words as such, since this task is successfully performed by COMDEC [21].

Although there is only a single data structure implementing the ATN grammar,

the core grammar is said to be an element of the World Model, and the current

version of the grammar (i.e. the core grammar plus various extensions depending on

the history of the current learning session) is considered a component of the

Performance Element. The current state of the non-q-sign vocabulary is also part of

this element, while the original vocabulary is part of the World Model. This conforms

to Smith's model of a learning process as operating on or making changes in the

Performance Element, where only the designer can alter the World Model.

When the Performance Element is processing an example, it reaches one or

more states where none of the transitions leaving those states matches the next

word in the example (unless the example is already accepted by the grammar). When

this occurs, it passes a set of pointers to these states and a pointer to the next word
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in the example to the portion of the Critic that is embedded in the Performance

Element.

5.2.4 Critic and Learning Element

The Critic performs three semi-independent functions: Evaluator,

Diagnostician, and Therapist.

As Evaluator, it evaluates the Performance Element's ability to parse each

example and 'tells' the parser to halt when the Critic realizes that the parser cannot

understand the next phrase of the example. The Evaluator is embedded in the

Performance Element. As described above, when the parser halts it provides the

Critic with the necessary state information to perform its hypothesis-formation task.

As Diagnostician, the Critic localizes the reasons for poor performance by

noting at which state(s) the parser was forced to halt. It enumerates a set of

hypotheses based on the structural match between the example and the localized

position in the grammar. 15

In Therapist mode, the Critic performs the evaluation measure. 16 It selects one

of the hypotheses formulated while in Diagnostician mode, and returns to

Diagnostician mode. The Diagnostician enumerates a set of test/action

specifications, and the Therapist selects some of these to augment the transitions in

the newly chosen structural extension.

The Critic passes the chosen structural and test/action hypotheses to the

Learning Element, which utilizes knowledge of implementation details to determine

1 Sectio n 3.3

16 Sections 3.4 and 4.3

~ ~. --
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how to alter the ATN data structure to include the current extension. Actually, the

term 'Learning Element' may be a poor choice for this module since it simply makes

the changes suggested by the Critic; however, Smith et al. [20] describes the

'learning process' in as simply an addition of already formulated and selected rules

to permanent memory.

5.3 Implementation Details

The MAGE subsystem is implemented in MDL ('Muddle') [15] and runs on a

Digital Equipment Corporation KA-10 under the ITS operating system. MAGE

includes about 1300 lines of MDL code, and the compiled version requires about 47

blocks of memory beyond the MDL interpreter. (A block contains 1024 36-bit words.)



6. Conclusions

6.1 Capabilities and Limitations

This report describes the development of a computer program, MAGE, that

acquires and organizes much of the domain-specific knowledge required by the

related system, CATNIP [16], to process conversations over Morse code radio

networks. MAGE incorporates several of the levels of learning ability described by

Winston [23]. On the lowest level, it 'learns' the domain-specific knowledge

contained in its core grammar by being programmed. On higher levels, it receives

additional information by being told, in the language of the domain rather than a

programming language, and it acquires the rest of its domain-specific knowledge via

learning by example. It is not able to learn by discovery.

MAGE uses the parser's ATN knowledge base as a 'core' on which it builds the

developing grammar. The core contains a certain amount of domain knowledge that

was readily available to the human who developed CATNIP and MAGE but could not

be acquired by the present version of MAGE. The inclusion of a core knowledge

base represents learning b being programmed. The core includes:

" the discourse structure imposed on conversations by radio-network
protocol

* the types of information conveyed during Morse code conversations

" the set of generic tokens and information about how to narrow down
what should and should not be matched by these tokens

* the spellings and meanings of the internationally defined q-signs

" the syntax of a few basic phrases and the meanings of the words that
appear in these phrases



* the knowledge that 'noise' words exist

* how to format the various types of information for human-readable
output

This knowledge is reflected in the core as:

" the top-down organization of the ATN knowledge base into thirteen
semantically categorized subnetworks

" the internal structure of the core subnetworks

" the registers, tests, and actions

" a lexicon that associates the q-signs and other words contained in the
core vocabulary with their synonyms, if any, among the known words

" the printing functions

MAGE receives as input individual transmissions, each containing either no

new information or exactly one new phrase. In some cases where the example

contains unknown words, MAGE must ask the user for additional information about

the new words, and the user responds in the language of the domain rather than by

additional programming: this is learning y bn told.

MAGE derives enough information from each example to extend the

knowledge base to process the new phrase in the context of the example

transmission and related contexts. The new extension becomes an integral part of

the grammar, utilized henceforth by CATNIP -- to select the correct transcription of a

conversation from among the many transcriptions suggested by COMDEC and to

produce a human-readable summary of the information conveyed during the

conversation -- and by MAGE -- to aid in the bootstrap procedure that extends the

grammar. This process represents learning by example. The procedure followed by

MAGE is:



*6o-

1. MAGE attempts to parse the example transmission
using the current version of the ATN.

a. If the example can already be parsed, get a new
new example.

b. Otherwise, the parse failed at some particular
word in the example sentence; that is, it could
not advance any of the one or more parse paths by
another transition matching this word. Call the
last state in each failed path a
'last-matched-state'. Call the word on which the
parse failed the 'next-word'.

2. MAGE looks for some word following the next-word
that follows the end of the new phrase.

a. This word and all words following this word in
the example match some connected sequence of
states and transitions in the ATN that can be
reached, via existing transitions, from one or
more of the last-matched-states. Call the first
state in each such sequence an 'end-of-phrase'.

b. Or, there is no such word and the new phrase
ends at the end of the transmission: the extension
representing the new phrase must end in a terminal
state, also called 'end-of-phrase'.

3. MAGE compares each last-matched-state/end-of-
phrase pair to the set of models, where any of the
three states corresponding to those in Model 0 may
match the last-matched-state and any terminal state
may match the end-of-phrase, depending on the
particular model and circumstances.

a. It finds one or more models for each pair that
could be used to construct an extension for the
new phrase. Call each such model and pair
combination a 'template'.

b. It selects the best template on the basis of a
set of heuristics and constructs the structural
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component of an addition to the ATN, called an
'extension'.

4. MAGE selects a set of test specifications and a
set of action specifications for each of the
transitions in the extension.

a. The specifications are chosen according to a
set of heuristics that consider the transition
symbol, the context of the rest of the
transmission, and the particular subnetwork to
which the extension was made.
b. MAGE adds the specifications to the previously

constructed extension and gets a new example.

MAGE may extend the knowledge base to include an arbitrarily large number

of new phrases for discussing the concepts allowed by the known discourse

structure. It augments the transitions that process the words of these phrases with

tests that provide filters for generic tokens and actions that extract the information

from a phrase that provides temporary context and contents for the summary output.

MAGE may be considered an implementation of some linguistic models of

human language acquisition proposed by Chomsky [4, 5]. This analogy is very

natural, since language acquisition seems very closely related to grammatical

extension.

* The domain-specific knowledge contained in the core knowledge base
corresponds.to the innate 'universal grammar'.

* The example transmissions correspond to the utterances heard by the
'child'.

* The models and associated heuristics correspond to the 'universal
rules'.

*The creation of several templates and consideration of possible
test/action specifications corresponds to the formation of competing

L .
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hypotheses.

* The construction of one extension that processes the example
corresponds to the selection of one hypothesis that adequately explains
the data.

Even if these models turn out to be poor descriptions of the learning processes

actually used by children acquiring their native language, this research has

demonstrated that these theories are still useful in the design of computer programs

that successfully learn by example.

However, MAGE has many limitations:

* It is not able to recognize changes to the discourse structure or to the
type of information conveyed during conversations, should these occur.
In other words, it cannot create new subnetworks, registers, tests, or
actions, nor discard existing ones.

" It includes no mechanism for automatically adding the meanings of new
q-signs or other vocabulary words, unless these words are synonyms of
previously known words; however, this can be easily programmed by a
human.

" It assumes the existence of an intelligent and knowledgeable user, who
does not simply type in complete new transcripts but rather edits the
example transmissions so that they each include only one new phrase.
This means the user should have some knowledge of the current
capabilities of the knowledge base. Fortunately, MAGE performs
adequately most of the time with a naive user, except where the
transcript includes a large number of 'interruptions'.

9 Most notably, the current version of MAGE can not deal with the
interruption problem and is able neither to extend the Interrupt.
Subnetwork and related lower-level subnetworks nor filter out
interruptions from example transmissions.

These limitations are what separate grammatical or knowledge-base extension

from grammatical inference. If MAGE could do all these things, it would be able to

acquire, from transcripts, all the domain-specific knowledge required by CATNIP.
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That is, it could learn by discovery, the highest and least understood form of

learning.

A system that could do all the things listed above, without prior

domain-specific knowledge, could automatically acquire the particular

domain-specific knowledge required by any system whose knowledge base could be

derived by a human from a reasonable amount of data taken directly from the

domain and organized as an augmented transition network. It would 'be a solution to

the very difficult problem of grammatical inference of a context-sensitive grammar.

6.2 Suggestions for Future Research

The research described in this report represents a small step in the

development of a grammatical-inference machine that could construct the

knowledge base or grammar necessary to parse a natural language from scratch, i.e.

without requiring a programmer-defined organization of subnetworks, registers,

tests, and actions. The design of this machine would require the removal of all the

limitations described above, which involves finding the solution to two major

artificial-intelligence problems.

One of the problems to be solved is grammatical inference of the transition

network component of the ATN from an incomplete set of examples, each containing

an arbitrary amount of new information and an arbitrary amount of old information.

The current state of machine inference of context-free grammars, which are

equivalent to non-augmented transition networks, assumes a structurally complete

sample set. However, it is impossible to put together a sample set using every

production or rule in a grammar when it has not yet been agreed what all the rules

are for any natural language. Therefore, either a new inference algorithm with

L . . . . . . . . . • . . .. .. . . . . . . L _ . . . . . . . . . . I I
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different assumptions or-a completely different method for deriving grammars for

natural languages would have to be developed.

The solution to the other problem requires the automation of both the process

of recognizing the need for certain registers, and the process of writing algorithms,

or abstract function descriptions, for the tests and actions. Once an algorithm has

been generated in some simple 'programming language' known by the learning

program, a human programmer could code the tests and actions in the actual

language (e.g. Pascal, PL/1, MDL) suitable for the particular environment.

Both problems might be considerably more tractable if restricted to Morse

code or some equally simple domain, and if they could be solved independently. That

is, the ability to utilize the domain-specific knowledge inherent in a programmed

version of one of the two components may make it easier to develop an automatic

mechanism to perform the other function.

For example, a grammatical-inference machine might use some domain

knowledge, such as the topic of q-signs or the type of information conveyed during

conversations, to develop the set of subnetworks for processing Morse code

conversations. The Morse code domain simplifies the test/action problem by

restricting the potential contents of registers to words and phrases selected from

transmissions. Tests are restricted to putting additional constraints on generic

tokens by comparing the contents of registers to the current word(s); actions are

restricted to selecting/storing important information and deleting information that is

no longer desired. This knowledge might be utilized by a program that automatically

generates registers, tests, and actions.

Regardless of whether these problems are ever dealt with for the specific case
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of automatic generation of* the knowledge base for parsing Morse code

conversations, it is hoped that they will someday be solved for the general case, so

that machine acquisition of natural language will become possible.
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I. A Morse Code Conversation

A typical example of a goal-oriented Morse code conversation is given below,

with each transmission followed by an English transcription. 'ROCK' and 'SALT' are

two operators. Very little of this conversation can be understood by the parser using

only MAGE's core grammar, which is presented in Appendix Ill, although all of it can

be parsed using the complete grammar actually used by CATNIP. However, MAGE is

capable of extending the grammar so that the parser can 'understand' this entire

conversation. The sample learning session presented in Appendix II shows how

MAGE extends the core grammar to understand new transmissions; many of the

transmissions in this conversation are used as examples.

VVV VVV ROCK ROCK ROCK DE SALT SALT GSA ? K

("[Hey] Rock, this is Salt. What is the strength of my signals?
Over")

VVV VVV ROCK DE SALT GSA ? ORK ? GSA ? ORK ? QTC QTC K

("[Hey] Rock, this is Salt. What is the strength of my signals?
What is the intelligibility of my signals? [Can you hear me?]
I have messages for you. Over")

SALT DE ROCK GSA 5 ORK 5 GA K

("Salt, this is Rock. The strength of your signals is very good. The
intelligibility of your signals is excellent. [I can hear youl]
Go ahead. Over")

HR TFC HR TFC OK ? K

("Here's some traffic. [I'm going to send a message now.] Okay?
Over")

QRV K
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("I am ready. Over")

NR 1 GR 200 1500 BT (100 code-groups> BT BT <100 code-groups> BT
OSL? K

("[Message] Number one, with 200 groups, at 1500 hours (3 p.m.) break
(100 code-groups> break <100 code-groups> break.
Can you acknowledge receipt? Over")

N N PSE RPT GRPS 25,40,98 K

("No. Please repeat groups 25, 40, and 98. Over")

OK OK GRP 25 <code-group> / GRP 40 <code-group> /
GRP 98 (code-group> K

("Okay. Group 25 is <code-group>. Group 40 is <code-group>.
Group 98 is (code-group>. Over")

TKS OSL UR MSG NR 1 NW K

("Thanks. I am acknowledging receipt of your message number one now.
Over")

QTC? K

("Do you have any messages for me? Over")

QRU QRX ? K

("I have nothing for you. When will you call me again? Over")

ORX NXTTMW OK? K

("I will call you again tomorrow. Okay? Over")

CCSKSK

("Okay. End of contact")

VA

("End of contact")
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II. A Learning Session with MAGE

An example of MAGE's performance is given below for each of the seven

general models presented in Section 3.3. The prose in brackets is that printed by

MAGE for the given example. In each case, Figure a shows the model selected by

the hypothesis-formation algorithm; Figure b displays the original subnetwork

selected by the evaluation measure; and Figure c gives the result of applying the

model to the example and the chosen subnetwork. Since it is difficult to show tests

and actions in the diagrams, the selected test/action specifications are presented in

the brief discussion below each example.

Exampl 1

ROCK DE SALT PSE ANS QTC K
[Changing state 1 of TFC-INFO to TERMINAL]

I MODEL I]

Figure 10a: Model 1
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$o rc'

CCORE TFC - INFO]

Figure lOb: Core TFC-INFO

CEXTENDED TFC-INFO

Figure 10c: Extended TFC-INFO

("Rock, this is Salt. Please answer, I have messages for you. Over")

The phrase "ROCK DE SALT" is accepted by the ID-OP subnetwork (Figure

19), and "PSE ANS" is accepted by the QUA L-CNCT subnetwork (Fig. 21). When a

phrase accepted by ID-OP is followed by a phrase accepted by QUAL-CNCT, the

two phrases together are accepted by the CONTACT subnetwork (Fig. 18). This

subnetwork may be followed by the TRAFFIC subnetwork (Fig. 22), as well as by
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another occurrence of CONTACT, as shown in the OVERALL subnetwork (Fig. 17),

the highest level subnetwork in this ATN. "QTC" matches the symbol on the first

transition of TFC-INFO (Fig. 23), which is pushed to (called) by the first transition of

the higher-level TRAFFIC subnetwork. However, "K" does not match the next

transition in TFC-INFO; instead, it matches the transition following TFC-INFO in

TRAFFIC. This indicates that the next-state of the "QTC" transition should be a

terminal state so it can pop (return) to TRAFFIC, so MAGE changes it.

Since no transitions are added, it is not necessary for MAGE to consider

adding new tests or actions.

Examole 2

QSL MSG NR 3? K

[Adding new transition '?' to state 4 of ACKNOW]

[Also adding I new states to ACKNOW]

[States: TERMINAL]

[MODEL 2]

Figure 11 a: model 2
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(CORE ACKNOW]

Figure lb: core ACKNOW

[EXTENDED ACKNOW]

Figure 1 lc: extended ACKNOW

("Can you acknowledge receipt of message number three? Over")

The phrase "QSL MSG NR 3" is accepted by the ACKNOW subnetwork (Fig.

28) and "K" matches the symbol on the transition following a (call) push to

ACKNOW in the higher-level REQ-INFO subnetwork (Fig. 26). Since it is known a

priori that extensions should be made to lower-level rather than higher-level

subnetworks whenever possible, MAGE adds a transition "?" to the terminal state of

ACKNOW and creates a new terminal state that pops (returns) to REQ-INFO.

Now the action [SCRATCH input] (store input token in <scratch-pad> register,

destroying the previous contents) is already associated with "QSL". Since "?" refers

back to the q-sign, the action [0-PEND SCRATCH] (the token in (scratch-pad> was

used as a question; put it in the (pending-question> register of the receiving
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operator) is associated with the new transition.1

Examnple

NR 1 GR 200 QTR 1400 any BT QSL ?K
[Adding new transition 'QTR' to state 4 of HEADER)

[Also adding 1 new states to HEADER)

[States: # ,to TERMINAL]

3

E MODEL 33

Figure 12a: Model 3

[CORE HEADER]

Figure 12b: Core HEADER

17All tests and actions are defined in Appendix Ill.
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6

CEXTENDED HEADER]

Figure 12c: Extended HEADER

("[Now sending message] number one, with 200 groups, at the time 1400

hours. Break <code-groups> break. Can you acknowledge receipt? Over")

"NR 1 GR 200" matches the first few transitions of the HEADER subnetwork

(Fig. 24) and is followed by a transition matching "1400" (i.e. the symbol on this

transition is "# "). "any BT QSL ? K" is accepted by the MESSAG subnetwork (Fig.

25), which follows HEADER in the higher-level TRAFFIC subnetwork (Fig. 22). Thus

"QTR #" appears to be an alternate way of phrasing this last "# ", so MAGE

creates two new transitions "QTR" and "# ", with a new state between them, in

parallel with the original transition for "#"

Since "QTR!' is a q-sign followed by an argument, the action [SCRATCH input]

is associated with "QTR" and the actions [Q-VAL input] and [Q-ACT SCRATCH] are

associated with the argument. [SCRATCH input] stores the input token in the

<scratch-pad> register, destroying the previous contents; [Q-VAL input] adds the

next input token to the <scratch-pad> register without destroying the previo,-i

contents; [Q-ACT SCRATCH] removes the q-sign and its argument(s) from
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<scratch-pad>, determines which register to put them in, and puts them there. The

possible registers include <expected-actions), <quality-of-contact),

<general-situation-description>. In addition, since "QTR #" is another way of

phrasing the "# ", any tests or actions on the original transition must be copied to

the new ones: therefore, [GMT-TIME input] is also associated with the new transition

for " # ". The action [GMT-TIME input] puts the input token, indicating time of

transmission, in the <time-and-date> register.

Examrle 4

VVV ROCK DE SALT QSA ? K

'WV' IS AN UNKNOWN WORD. DOES IT HAVE A
SYNONYM ON THE FOLLOWING LIST?

<list of known vocabulary words that are not q-signs or call-signs)

N

DOES 'WV' HAVE A QSIGN SYNONYM?

N

COULD 'WV' BE CONSIDERED A 'NOISE'
WORD?

Y

[Adding new transition 'VVV' from state 0

to 0 of ID-OP]

( MODEL 4 J

Figure 13a: Model 4

L A.. . . .. .
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[CORE ID-OPI

Figure 13b: Core ID-OP

[EXTENDED ID - OPJ

Figure 13c: Extended ID-OP

("[Hey] Rock, this is Salt. What is the strength of my signals? Over")

Since "VVV" is a new word, MAGE asks the user to supply some information

about its meaning. Since MAGE is told that "VVV" is a 'noise' word, and it is followed

by "ROCK DE SALT" which is accepted by the ID-OP subnetwork (Fig. 19), MAGE

adds a new transition "VVV" as a loop on the start-state of I D-OP.

There are no tests or actions associated with noise words.

ExamDle 5

NR 2 GR 150 1600 any BT any BT QSL ? K

LLI
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[Adding new transition 'any' to state 2 of MESSAGJ

(The arc has next-state 1]

[ MODEL 5]

Figure 14a: Model 5

any

[CORE MESSAG3

Figure 14b: Core MVESSAG

(8 ' EXTENDED 
MESSAG]

Figure 14c: Extended MVESSAG
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("[Now sending message] number two, with 150 groups, at 1600 hours. Break

<code-groups> break (code-groups> break. Can you acknowledge receipt? Over")

"NR 2 GR 150 1600" is accepted by the HEADER subnetwork (Fig. 24), which

is followed by the MESSAG subnetwork (Fig. 25) in the higher-level TRAFFIC

subnetwork (Fig. 22). "any BT" is matched by the first two transitions of the

MESSAG subnetwork, but the second "any" does not match any transitions leaving

state 2. Rather than branch to a new path that merges with the old at "QSL", MAGE

notes that the second "any BT" also matches the first two transitions of MESSAG.

MAGE creates a new transition that returns to state 1, so this new phrase can be

repeated indefinitely.

The tests and actions that are associated with the original "any" transition

from the start-state to state 1 are copied to the new "any" transition: test [GROUP?.

input] and action [ADD-GROUP input). [GROUP? input] returns TRUE if the input is

probably a code-group or English word; [ADD-GROUP input] increments the

<number-of-word.'-received-so-far-in-message> register, and puts the input token in

the (last-word-received-in -message> register, which is useful for error-recovery.

Example 6

QRX? K

[Adding new transition 'QRX' to state 0 of END-CNCT]

[Also adding I new states to END-CNCT]

[States: ? , to TERMINAL]
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[ MODEL 61

Figure 15a: Model 6

[CORE END - CNCTI

Figure 15b: Core END-CNCT
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[EXTENDED END-CNCT]

Figure 15c: Extended END-CNCT

("When will you call me again? Over")

Here is a situation where the first word of the example doesn't match an

transition leaving a start-state. However, the q-sign "QRX" is semantically

associated with the END-CNCT subnetwork (Fig. 29). Since "K" appears on a

transition to a terminal state in END-CNCT, and the END-CNCT subnetwork can

follow itself in the highest-level OVERALL subnetwork (Fig. 17), the new phrase

"QRX ?" is added to END-CNCT as a new path.

Since "QRX" is a q-sign followed by a likely argument, it is associated with the

action [SCRATCH input], which saves the q-sign in the <scratch-pad> register until

its argument(s) are collected. The argument "?" is associated with the action

[Q-PEND SCRATCH], which notes that the q-sign found in <scratch-pad> was used

as a question and stores it in the <pending-question> register of the receiving

operator.
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Example Z

QTC? K

[Adding now transition 17? to state 1 of TFC-INFOJ

[Also adding 1 now states to TFC-INFO]

[States: TERMINAL]

[MODEL 7]

Figure 16a: Model 7
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[EXTENDED TFC-INF03

Figure 16b: Recently extended TFC-INFO from Figure 10c

rEXTENDED TFC-INFO]

Figure 16c: TFC-INFO extended further

("Do you have any messages for me? Over")

In this case, another extension is made to a previously extended subnetwork



-85-

(see Figure 10 above). "QTC" matches the first transition in the TFC-INFO

subnetwork (Fig. 23), but "?" does not match the transition leaving this state, nor

does it match any transition leaving the state in the TRAFFIC subnetwork (Fig. 22)

that can be popped (returned) to from this terminal state. Since "?" is likely to be a

q-sign argument, a branch is created in TFC-INFO that ends in a new terminal state.

(Actually, this terminal state is merged with the other terminal siate that has no

transitions leaving it in order to minimize complexity.)

Since "?" refers to a q-sign, and [SCRATCH input] is already associated with

that q-sign (and will store the token in the <scratch-pad> register), the action

[Q-PEND SCRATCH] is selected for the new transition (to retrieve the q-sign from the

<scratch-pad> register and put it in the <pending-question> register of the receiving

operator).

SLI__



III. The Core Grammar of MAGE
This appendix includes a list of the chatter words that appear in the core

grammar, illustrations of the subnetworks composing the core grammar, a list of

registers, and descriptions of the tests and actions. Although the registers, tests,

and actions are the same as used by CATNIP 18 [16], the vocabulary and grammar of

MAGE are considerably smaller than the grammar used by CATNIP.

Vocabulary

?-- question mark; punctuation and a q-sign argument

# -- generic matched by any number

ANS -- "answer"

any matches any code-group or English word in message

BT -. "break"; a pro-sign

callsign -- generic matched by any (known) call-sign; MAGE cannot recognize

call-signs without being told

DE -- "this is" or "from"

delim -- generic matching any delimiter: break or punctuation

GR -- "There will be - - - code-groups or English words in next message"

GRPS -- "groups"

K -- "end of transmission"; a pro-sign

location -- generic matched by any (known) location

MSG -- "message"

new-speaker -- denotes speaker change

18Section 2.2
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NR -- "number"

PSE-- "please"

QRX-- "I will call you again at - - - hours" or, if followed "?", "When will you

call me again?"; although MAGE knows the spelling and topical associations of sixty

q-signs, the q-signs listed here are the only ones that MAGE knows how to use in

context (because they appear as transition symbols in the core grammar)

QRZ -- "You are being called by --- (on frequency - - -)", or "Who is

calling me?"; parentheses indicate an optional argument

QSA -- "The strength of your signals is - - - ", or "What is the strength of my

signals?"

QSL-- "I am acknowledging receipt (of - - - )", or "Can you acknowledge

receipt (of - - - )?"

QTC -- "I have - - - messages for you", or "How many messages have you

to send?"

RPT -- "repeat"

SK -- "end of contact"; a pro-sign

ZOH -- "There will be - - - code-groups in the next message"

Subnetworks

Legend:

* States are represented by circles and transitions by arrows.

" A circle containing an S represents the subnetwork's start:state. Any
circle with a darkened area represents a terminal state.

" Each transition has one or more transition symbols. If a transition has
more than one symbol, they are separated by commas.

" A word composed of upper-case letters surrounded by (single)
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quotation marks indicates that this transition accepts the particular
chatter word.

" A word composed of upper-case letters, but not surrounded by
quotation marks, denotes a push (call) to the named subnetwork.

" "(new-speaker)" denotes a speaker change, or switch of receiving and
sending operators

" Other words composed of lower-case letters, and "# ", denote generic
tokens that are replaced by specific chatter words at parse-time (e.g.,
"callsign" may be replaced by "ROCK", an operator's call-sign).

CONTACT REV - INFO

(new - speaker) (new -speaker) (new-s eaker)

END - cIcN
[CORE OVERALLJ ( new - speoAr)

Figure 17: OVERALL subnetwork

LLq



( CORE CONTAC T]

Figure 18: CONTACT subnetwork

[CORE ID-OP]

Figure 19: I D-OP subnetwork
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[CORE NET-RELAY]

Figure 20: NET-RELAY subnetwork

2

[CORE QUAL -CNCTI

Figure 21: OUAL-CNCT subnetwork



PC/-IFO (new - speaker)

[ CORE TRAFFIC]

Figure 22: TRAFFIC subnetwork

(CORE TFC - INF03

Figure 23: TFC-INFO subnetwork

(CORE HEADER]

Figure 24: HEADER subnetwork
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any

[CORE MES!SAG3

Figure 25: MESSAG subnetwork

ECORE REQ-INF03

Figure 26: REG-INFO subnetwork
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delim

3 4
any

[CORE REO -RPTI

Figure 27: REQ-RPT subnetwork

[CORE ACKNOW]

Figure 28: ACKNOW subnetwork
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[CORE END-CNCTI

Figure 29: END-CNCT subnetwork

Registers

<information-about-receiving-operator> -- Call-sign, location of station, and

other information regarding current receiver.

<information-about-sending -operator>

<last-word-received) -- Useful for error-recovery.

<time-and-date>

<scratch-pad) -- Temporary storage for saving arguments, etc.

<number-of -words-in-message>

(id-number-of-message -- Usually numbered in order of sending.

(number-of -words-received-so-far-in-message) -- Useful for comparing with

contents of <number-of-words-in-message> register to determine whether entire

message has been received.

(last-word-received-in-message> -. Useful for error-recovery.

<general-situation-description> -- Description of radio-network status.

<quality-of-contact> -- Description of station status. There is one of these

registers for Qah active operator..

(expected-action> -- Actions that an operator is expected to perform, usually

. . . . . . . . .. . . . ... . . . . . , . . ... . ... .
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in response to request; this provides a context for unpredictable actions. There Is

one of these registers for each operator.

<pending-questions> -- Questions an operator is expected to answer; this

provides a context for unpredictable phrases that might be answers to questions.

There is one of these registers for each active operator.

<requests-for-repeats> -- Requests for something (usually a code-group) to be

repeated.

Tests

[GROUP? input] -. Returns TRUE if the argument is not a q-sign or delimiter;

used only when transition symbol is "any

[NOT? (list>)] -- Returns TRUE if the input word is not a member of (list); used

when transition symbol is "any". The argument 'input' does not appear explicitly in

this test specification because test and action specifications are constrained to

include only one argument; however, the actual functions that implement these tests

and actions also have access to the set of context registers and the current input

token.

[-RECEIVER? input] -- Returns TRUE if token is not (due to '-') the same as

the call-sign in the <information-about-receiving-operator> register; used only when

transition symbol is "callsign".

Actions

[RECEIVER input] and [SENDER input] -- Put input token in call-sign field of

<information -about-receiving -operator) or <information-about-sending -operator)

register, respectively; symbol is "callsign".

[NSPEAK T] -- Switch contents of <information-about-receiving-operator> and
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(information-about-sending-operator> registers, If non-empty; symbol Is

"new-speaker", denoting speaker change.

[SCRATCH input] -- Put input token in the <scratch-pad> register, destroying

previous contents; symbol arbitrary.

[Q-VAL input] -- Add input token to list of tokens in (scratch-pad> register

without destroying previous contents: the first element of list'is the pivot word, others

are its arguments; symbol arbitrary.

[Q-ACT SCRATCH] -- Get pivot word (usually q-sign) and arguments from

<scratch-pad) register and put in one of the <quality-of-contact>,

<expected-actions>, or <general-situation-description> registers, depending on

meaning of pivot word and its argument(s); symbol arbitrary but always preceded

directly or indirectly by a pivot word.

[Q-ACT input] -- The particular pivot word is not likely to have arguments, so

proceed to put it in one of the above registers; symbol usually a q-sign.

[Q-PEND SCRATCH] -- Get pivot word from the <scratch-pad> register and put

in the (pending-question> or <expected-action> register, depending on the meaning

of pivot word; symbol is "?".

[MSG-NUM input] -- Put token in <id-number-of-message> register; this is the

identification number of the next message; symbol is "# ".

[TFC-GR-NUM input] -- Put token in <number-of-words-in-message> register;

this is the number of code-groups or English words to be sent in the next message;

symbol "#".

[GMT-TIME input] -- Put token in time field of <time-and-date> register; this is

time of transmission of most recent message; symbol "# ".
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[ADD-GROUP input] -- Put token in the Vlast-word-received-in-message>

register, useful for error-recovery, and increment the

<number-of-words-received-so-far-in-message> register; symbol "any

[LAST-GROUP T] -- Compare contents of the

(number-of -words-received-so-far-in -message> with contents of

<number-of-words-in-message> register; if former _ latter, tell COMDEC to turn off its

code-group recognition mechanism; symbol is "BT" or some other break.
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implemented as a computer program operating on a data structure representing an

ATN grammar.

The rest of this report is organized as follows:

* Chapter 2 presents MAGE's domain model and the particular aspects
that make possible the evaluation measure.

* Chapter 3 states the general grammatical inference problem, and
presents the hypothesis-formation algorithm and evaluation measure
used by MAGE in its partial solution to the related problem of
grammatical extension.

* Chapter 4 discusses further the domain model, hypothesis-formation
models, and evaluation measure in the context of language acquisition
by children.

* Chapter 5 describes the design and implementation of MAGE.

" Chapter 6 contains a summary and conclusions.
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2. An ATN with Semantic Categories

2.1 Machine Recognition of Hand-sent Morse Code

The research was motivated by the real-world problem of automating the

recognition and understanding of hand-sent Morse code in an amateur-radio

network environment. Morse code consists of five elements: dots, dashes, mark

spaces, letter spaces, and word spaces. The English alphabet, digits, and

punctuation are encoded as groups of one to six marks (dots or dashes) separated

by mark spaces. These groups are separated from each other by letter spaces

(ideally, three times as long as a mark space) and combined into words, which are

separated from each other by word spaces (ideally seven times as long as a mark

space). For example, "SOS" is transmitted as "dot ms dot ms dot Is dash ms dash

ms dash Is dot ms dot ms dot ws", where "S" is encoded as "., "0" as "m---", "s"

means mark space, "Is" letter space, and "ws" word space. Morse code is

transmitted over radio by short signals (dots) and long signals (dashes), with the

pauses in between signals serving as spaces.

It is desirable to automate the reception of these signals and the transcription

of the marks and spaces back into character text, to produce a readable output.

However, there are many aspects of manual Morse code that make transcription

difficult, not only for a machine but also for a human operator. Many errors are

introduced by radio attributes like transmitter chirp and atmospheric interference,

and by sender irregularities including spacing errors (e.g. a letter space that Is

shorter than a nearby mark space), mark errors (e.g. sending a dash instead of two

dots) and spelling errors. The result is analogous to speech that is slurred or broken

L,


